An automatic transmission, also called auto, self-shifting transmission, n-speed automatic (where n represents its number of forward gear ratios), or AT, is a type of motor vehicle transmission that automatically changes the gear ratio as the vehicle moves, meaning that the driver does not have to shift the gears manually. Like other transmission systems on vehicles, it allows an internal combustion engine, best suited to run at a relatively high rotational speed, to provide a range of speed and torque outputs necessary for vehicular travel. The number of forward gear ratios is often expressed for manual transmissions as well (e.g., 6-speed manual).
The most popular form found in automobiles is the hydraulic planetary automatic transmission. Similar but larger devices are also used for heavy-duty commercial and industrial vehicles and equipment. This system uses a fluid coupling in place of friction clutch, and accomplishes gear changes by hydraulically locking and unlocking a system of planetary gears. These systems have a defined set of gear ranges, often with a parking pawl that locks the output shaft of the transmission to keep the vehicle from rolling either forward or backward. Some machines with limited speed ranges or fixed engine speeds, such as some forklifts and lawn mowers, only use a torque converter to provide a variable gearing of the engine to the wheels.
Besides the traditional torque converter hydraulic automatic transmissions, there are also other types of automated transmissions, such as continuously variable transmission (CVT), and also automated manual transmissions and semi-automatic transmissions, that free the driver from having to shift gears manually, by using the transmission's computer to change gear, if for example, the driver were redlining the engine. Despite superficial similarity to other transmissions, traditional automatic transmissions differ significantly in internal operation and driver's feel from automated manuals/semi-automatics and CVTs. In contrast to conventional automatic transmissions, a CVT uses a belt or other torque transmission scheme to allow an "infinite" number of gear ratios instead of a fixed number of gear ratios. An automated manual (and semi-automatic transmissions) retain a single clutch like a conventional manual transmission, but controls and depresses the clutch through electrohydraulic means, and automates the clutch and shifting process. The ability to shift gears manually, often via paddle shifters, can also be found on certain automatic transmissions (manumatics such as Tiptronic), automated manuals (BMW SMG, Ferrari F1, VW Group DSG), and CVTs (such as Lineartronic).
The obvious advantage of an automatic transmission to the driver is the lack of a clutch pedal and manual shift pattern in normal driving. This allows the driver to operate the car with as few as two limbs (possibly using assistive devices to position controls within reach of usable limbs), allowing individuals with disabilities to drive. The lack of manual shifting also reduces the attention and workload required inside the cabin, such as monitoring the tachometer and taking a hand off the wheel to move the shifter, allowing the driver to ideally keep both hands on the wheel at all times and to focus more on the road. Control of the car at low speeds is often easier with an automatic than a manual, due to a side effect of the clutchless fluid-coupling design called idle creep that causes the car to slowly move on its own while in a driving gear, even at idle. The primary disadvantage of the most popular hydraulic designs is reduced mechanical efficiency of the power transfer between engine and drivetrain, due to the fluid coupling connecting the engine to the gearbox. This can result in lower power/torque ratings for automatics compared to manuals with the same engine specs, as well as reduced fuel efficiency in city driving as the engine must maintain idle against the resistance of the fluid coupling. Advances in transmission and coupler design have narrowed this gap considerably, but clutch-based transmissions (manual or semi-automatic) are still preferred in sport-tuned trim levels of various production cars, as well as in many auto racing leagues.
The automatic transmission was invented in 1921 by Alfred Horner Munro of Regina, Saskatchewan, Canada, and patented under Canadian patent CA 235757 in 1923. (Munro obtained UK patent GB215669 215,669 for his invention in 1924 and US patent 1,613,525 on 4 January 1927). The first automatic transmission using hydraulic fluid was developed in 1932 by two Brazilian engineers, José Braz Araripe and Fernando Lehly Lemos; the prototype and design were later sold to General Motors, which exhibited a technology in the 1940s Oldsmobile model as a "Hydra-Matic" transmission.
Being a steam engineer, Munro designed his device to use compressed air rather than hydraulic fluid, and so it lacked power and never found commercial application. One of the earliest examples of hydraulic fully automatic transmission is the Hydramatic, developed by General Motors in 1932.

View More On Wikipedia.org
  1. G

    s5253 automatic charge solution

    s5253 automatic charge solution ........Rehot this components & resolid charging jeck.........
  2. I

    DC-Unlocker Client 1.00.0717 ( Huawei E1732 and E1550 Idea India automatic lock )

    DC-Unlocker Client 1.00.0717 Huawei E1732 and E1550 Idea India automatic lock to first sim inserted bug fixed. Official Download link - download DC-unlocker software. Unlock supported phones and modems
  3. M

    ATF Software AUTOMATIC UPDATES Launched

    @ALL Here are very simples steps to AUTOMATICALLY get the latest AdvanceBox.exe Software. Take note, that this are Minor releases which fixes the Bugs on the Major releases.
Top